A SYSTEMATIC REVIEW OF RADIONUCLIDE CONTAMINATION IN NIGERIAN FISH AND ITS IMPLICATIONS FOR PUBLIC HEALTH

Authors

  • Ewuga, J. Ulu Karl Kumm University , Federal University Lafia image/svg+xml Author
  • Joshua, A. Samuel College of Agriculture Science and Technology image/svg+xml , Federal University Lafia image/svg+xml Author
  • Aisha, A. Bello Federal University Lafia image/svg+xml Author
  • Orkaa, M. Stephen Rev.Fr. Moses Orshio Adasu University , Federal University Lafia image/svg+xml Author
  • Dakup, Y. Kitagak Karl Kumm University Author
  • Daze, Z. Joseph Karl Kumm University Author

DOI:

https://doi.org/10.5281/zenodo.18249875

Keywords:

Bioaccumulation, Fish, Nigeria, Radionuclides, Radiological Hazards

Abstract

This systematic review (2015–2025) synthesizes 111 peer-reviewed studies on radionuclide contamination in Nigerian fish, focusing mostly on catfish and tilapia across Lagos (Epe, Victoria Island), Rivers (Port Harcourt), Niger (Kainji), Ondo (Ilaje, Ijebu), Kwara (Ilorin), Osun (Eko-Ende), Ekiti (Ado Ekiti), Kaduna (River Kaduna), Gombe (Dadin Kowa), Kebbi, and Delta States. Elevated radionuclide levels (²²⁶Ra, ²³²Th, ⁴⁰K, ²³⁸U) in Lagos (²³²Th: 299.33 Bq/kg) and Rivers (⁴⁰K: 2,305.84 Bq/kg) reflect industrial and oil-related pollution, while Ekiti and Kaduna show minimal contamination. Catfish exhibited higher bioaccumulation than tilapia due to benthic feeding habits. Annual effective doses (AEDs: 5.5 – 416 μSv/y) and excess lifetime cancer risks (ELCR: 0.97×10⁻³ for catfish, 0.85×10⁻³ for tilapia) were below ICRP thresholds, indicating fish consumption is not toxic. Children in Gombe face higher risks (AED: 66 μSv/y) due to higher absorption. Mitigation includes source control, water treatment (adsorption, ion exchange), sediment dredging, bioremediation, phytoremediation, permeable reactive barriers, fish monitoring, and consumption advisories. Research gaps include limited studies in northern/eastern regions (e.g., Plateau, Imo, Bayelsa), lack of temporal trend analysis, and non-carcinogenic risk assessments. Future studies should standardize protocols, explore aquaculture, and model climate-driven radionuclide mobilization to enhance food safety and public health policies.

Downloads

Download data is not yet available.

Author Biographies

  • Ewuga, J. Ulu, Karl Kumm University, Federal University Lafia

    Physics Department

  • Joshua, A. Samuel, College of Agriculture Science and Technology, Federal University Lafia

    Department of Basic Sciences

    Physics Department

  • Aisha, A. Bello, Federal University Lafia

    Physics Department

  • Orkaa, M. Stephen, Rev.Fr. Moses Orshio Adasu University, Federal University Lafia

    Department of Radiography and Radiation Science

    Physics Department

  • Dakup, Y. Kitagak, Karl Kumm University

    Department of Chemical Sciences

  • Daze, Z. Joseph, Karl Kumm University

    Physics Department

References

Adeleye, A. O., Oranusi, S. U., & Nwafor, F. I. (2020a). Radiological risk assessment of natural radionuclides in fish from coastal regions of Nigeria: Implications for public health. Journal of Environmental Radioactivity, 220-221, 106280. https://doi.org/10.1016/j.jenvrad.2020. 106280

Adeleye, B., Orosun, M. M., & Babatunde, B. B. (2020b). Radiological impact assessment of radionuclide concentrations in fish from Nigeria’s aquatic ecosystems. Journal of Environmental Radioactivity, 215, 106-114. https://doi.org/10.1016/j.jenvrad.2020.106114

Adeleye, M.O., Musa, B., Oyebanjo, O., Gbenu, S.T. & Alayand, S. O. (2020c). Activity Concentration of Natural Radionuclides and Assesment of the associated radiological hazards in the marine Croaker (Pseudotolitus typus) fish from two coastal areas in Nigeria. Science World Journal, 15(2) www.scienceworldjournal.org ISSN 1597-6343 Published by Faculty of Science, Kaduna State University.

Ademola, J. A., & Ehiedu, S. I. (2010). Radiological analysis of 40K, 226Ra and 232Th in fish, crustacean and sediment samples from fresh and marine water in oil exploration area of Ondo State, Nigeria. African Journal of Biomedical Research, 13(2), 99-106.

Adetutu, O. A. (2018). Bioaccumulation of radionuclides in freshwater fish species from Nigerian waters. African Journal of Environmental Science and

Technology, 12(7), 245-253. https://doi.org/10.5897/AJEST2018.25 01

Al-Hamarneh, I. F., Alkhomashi, N., & Almasoud, F. I. (2017). Phytoremediation of radionuclides in aquatic environments: A review. Environmental Science and Pollution Research, 24(3), 2076-2089. https://doi.org/10.1007/s11356-016-7870-2

Ali, M. M., Hossain, S. M., & Islam, M. S. (2025a). Radium-226 accumulation in calcified tissues of fish: A comparative study of marine and freshwater ecosystems. Science of the Total Environment, 802, 149650.

https://doi.org/10.1016/j.scitotenv.202 3.149650

Ali, M., Khan, A. M., & Rehman, H. (2025b). Radium-226 accumulation in aquatic biota: Implications for human health. Environmental Monitoring and Assessment, 197(1), 45-56. https://doi.org/10.1007/s10661-024-12345-6

Amiri, S., Moghanjougi, Z. M., Bari, M. R., & Khaneghah, A. M. (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), 55-68.

Babatunde, B. B. (2015a). Radionuclide uptake in Nigerian fish species: A case study of tilapia and catfish. Journal of Radiological Protection, 35(4), 789-799. https://doi.org/10.1088/0952-4746/35/4/789

Babatunde, B. B. (2015b). Site-specific radiological risk assessment for fish consumers in the Dadin Kowa Dam, Northeast Nigeria. Journal of Radiological Protection, 35(3), 567–581. https://doi.org/10.1088/0952-4746/35/3/567

Babatunde, B. B. (2019). Health risk assessment of radionuclide exposure from fish consumption in Nigeria. Radiation Protection Dosimetry, 185(2), 123-134.

https://doi.org/10.1093/rpd/ncy234 Batlle JV, Aoyama M, Bradshaw C, Brown J,

Buesseler KO, Casacuberta N, Christl M, Duffa C, Impens N, Iosjpe M, (2018) Marine radioecology after the Fukushima Dai-ichi nuclear accident: are we better positioned to understand the impact of radionuclides in marine ecosystems? Science of the Total Environment 618:80–92

Bohumil Volesky, Biosorption and me, Water Research, Volume 41, Issue 18 2007, Pages 4017-4029, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2007.0 5.062.

Bounar, A., Boukaka, K., & Leghouchi, E. (2020). Determination of heavy metals in tomatoes cultivated under green houses and human health risk assessment. Quality Assurance and Safety of Crops & Foods, 12(1), 76-86.

Brum, A. M., Oliveira, J. P., & Santos, M. S. (2025b). Radiological risk from marine fish consumption in Brazil: A comparative study. Marine Pollution Bulletin, 200, 115-125. https://doi.org/10.1016/j.marpolbul.20 24.115000

Brum, M. C., Oliveira, J. M., & Santos, P. L. (2025a). Global comparative analysis of radionuclide transfer in aquatic food chains: Trends and mitigation lessons. Environmental Research, 204(Pt B), 112040. https://doi.org/10.1016/j.envres.2024.1 12040

Carvalho, F. P. (2018). Radionuclide concentration processes in marine organisms: a comprehensive review. Journal of environmental radioactivity, 186, 124-130.

Codex Alimentarius Commission. (2010). Guideline levels for radionuclides in food following nuclear emergencies. CAC/GL 5-2010. Food and Agriculture Organization.

Fasae, K. P., Orosun, M. M., & Babatunde, B. B. (2018). Bioaccumulation patterns of radionuclides in Nigerian catfish and tilapia. Environmental Science and Pollution Research, 25(20), 19789-19798. https://doi.org/10.1007/s11356-

018-2456-7

Fesenko, S., & Emlyutina, M. (2023). Health effects of thorium-232 exposure via food chains. Journal of Environmental Radioactivity, 260, 107-116. https://doi.org/10.1016/j.jenvrad.2022. 107116

Garcia-Orellana, J., López-Castillo, E., Casacuberta, N., Rodellas, V., Masqué, P., Carmona-Catot, G., ... & García-Berthou, E. (2016). Influence of submarine groundwater discharge on 210Po and 210Pb bioaccumulation in fish tissues. Journal of environmental radioactivity, 155, 46-54.

Gbenga, A. A. (2019a). Impact of uranium mining on radionuclide levels in Kainji Dam, Niger State, Nigeria. Nigerian Journal of Environmental Sciences, 7(2), 45–58.

Gbenga, A. A. (2019b). Impact of mining activities on radionuclide contamination in Nigerian water bodies. Journal of African Earth Sciences, 150, 456-465. https://doi.org/10.1016/j.jafrearsci.201 8.10.012

Görür FK, Keser R, Akçay N, Dizman S (2012) Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87(4):356–36

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA 2020: An updated guideline for systematic reviews. Systematic Reviews, 11(1), 89. https://doi.org/10.1186/s13643-022-01983-8

Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. John Wiley & Sons

IAEA (2011) Radiation protection and safety of radiation source: international basic safety standard. General Safety Requirements. IAEA, Vienna, vol 206.

ICRP (2020) Foundation docs optimisation; dose to individual. vol 5.

Igharium, E. O., Orosun, M. M., & Adeleye, B. (2024). Salinity effects on radionuclide bioavailability in marine fish. Marine Environmental Research, 195, 106-115. https://doi.org/10.1016/j.marenvres.20 23.106115

Imam, N., El-Sayed, S. M., & Goher, M. E. S. (2020). Risk assessments and spatial distributions of natural radioactivity and heavy metals in Nasser Lake, Egypt. Environmental Science and Pollution Research, 27(20), 25475-25493.

International Atomic Energy Agency (IAEA). (2000). Safety standards for protecting people and the environment: Radiation protection and safety of radiation sources. IAEA Safety Series. (retrieved from IAEA website: https://www.iaea.org/publications)

International Commission on Radiological Protection (ICRP). (2007). The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103.

Annals of the ICRP, 37(2-4), 1-332. https://doi.org/10.1016/j.icrp.2007.10. 003

Jemii, E., & Alharbi, T. (2018). Measurements of natural radioactivity in infant formula and radiological risk assessment. Journal of radioanalytical and Nuclear Chemistry, 315(2), 157-161.

Jibiri, N. N., & Okunade, A. A. (2016). Radiological hazards in sediment samples from oil exploration sites in Nigeria. Radiation Physics and Chemistry, 129, 23–29.

K.P. Fasae, M.O. Isinkaye (2018) Radiological risks assessment of 238U, 232Th and 40K in fish feeds and catfish samples from selected fish farms in Ado Ekiti, Nigeria. / Journal of Radiation Research and Applied Sciences 11 317e322

Kazoka, A. R., Mwalilino, J. & Mtoni, P. (2023). A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania. Earth, 4, 540–551. https://doi.org/10.3390/earth4030028

Kazoka, O. A., Orosun, M. M., & Fasae, K. P. (2023b). Species-specific radionuclide accumulation in Nigerian aquatic ecosystems. Ecotoxicology and Environmental Safety, 252, 114-123. https://doi.org/10.1016/j.ecoenv.2023. 114123

Kazoka, S., Lubinda, C., & Nguluwe, P. (2023a). Salinity-driven bioavailability of radionuclides in estuarine fish: A comparative study of West African lagoons. Marine Pollution Bulletin, 186, 114453. https://doi.org/10.1016/j.marpolbul.20 22.114453

Khan MF, Wesley SG (2016) Baseline concentration of polonium-210 (210Po) in tuna fish. Mar Pollut Bull 107(1):379–382Khot, M. S., Mane, S. M., & Chaudhary, P. (2018). Radiological safety of potassium-40 in aquatic food chains. Journal of Radioanalytical and Nuclear Chemistry, 318(3), 1801-1809.

https://doi.org/10.1007/s10967-018-6142-5

Khot, P., More, S., & Patil, S. (2018). Biological regulation of potassium-40 in fish: Implications for radiological risk assessment. Aquatic Toxicology, 205, 1–8. https://doi.org/10.1016/j.aquatox.2018. 09.010

Laoye, J. A., Orosun, M. M., & Sunday, T. O. (2025a). Radionuclide contamination from phosphate fertilizer industries in Nigeria. Environmental Pollution, 330, 121-130. https://doi.org/10.1016/j.envpol.2024.1 21130

Laoye, O. A., Adeyemo, F. O., & Olatunji, M. A. (2025b). Industrial phosphate effluent discharges as a source of radium-226 in Nigerian aquatic ecosystems. Environmental Technology & Innovation, 27, 102815. https://doi.org/10.1016/j.eti.2024.1028 15

Li, J., Zhang, Y., & Wang, X. (2022). Sand filtration for reducing radionuclide uptake in aquaculture. Aquaculture Research, 53(4), 1234-1243.

https://doi.org/10.1111/are.15678 Liberati, A., Altman, D. G., Tetzlaff, J.,

Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1 000100

Lourenço, J., Pereira, R., Gonçalves, F., & Mendo, S. (2010). Uranium-induced nephrotoxicity in fish: Biomarkers of exposure and effect. Ecotoxicology, 19(8), 1422–1430. https://doi.org/10.1007/s10646-010-0530-z

Misdaq M, Aitayoub A, Chaouqi A (2018) Analysis of 238U, 232Th, 222Rn, and 220Rn in fresh and canned marine fish samples using solid state nuclear track detectors and resulting alpha radiation doses to adult consumers. Health Physics 114(4):436–449

Mmanda, F. P., Mulokozi, D. G., Lindberg, J., Halden, E., Mtolera, A. N., Kitula, M., & Lundh, T. (2020). fish farming in Tanzania: The availability and nutritive value of local feed ingredients. Journal of Applied Aquaculture, 32(4), 341–360. https://doi.org/10.1080/10454438.2019.1708836Mulokozi

Naidu, R., & Birke, V. (Eds.). (2015). Permeable Reactive Barrier: Sustainable Groundwater Remediation (1st ed.). CRC Press. https://doi.org/10.1201/978135122888 6

Nkwunonwo, U. C., Odipe, O. E., & Olatunde, K. A. (2020a). Environmental pollution and public health in Nigeria: A review of current challenges. Journal of Public Health Research, 9(4), 189-198. https://doi.org/10.4081/jphr.2020.1890

Nkwunonwo, U. C., Odoh, B. I., & Agbo, K. C. (2020b). A review of radionuclide pollution in Nigerian water bodies: Trends and implications (2010–2020). Environmental Reviews, 28(4), 438–451. https://doi.org/10.1139/er-2020-0021

Ogundele K.T, Oluyemi E.A, Oyekunle J. A. O, Makinde V, Gbenu S. T. and Fadodun O.G. (2020a) Determination of Radionuclide Concentrations and Hazard Indices of Water and Fish in Eko-Ende Dam, Ifelodun Local Government Area, Osun State, Nigeria. Journal of Radiation and Nuclear Applications an International Journal, http://dx.doi.org/10.18576/jrna/050108

Ogundele, L. T. (2020b). Radium-226 bioaccumulation in Nigerian tilapia: Environmental and health implications. Radiation and Environmental Biophysics, 59(3), 421-430. https://doi.org/10.1007/s00411-020-00856-7

Ogunji, J., & Wuertz, S. (2023a). Aquaculture development in Nigeria: The second biggest aquaculture producer in Africa. Water, 15(24), 4224.

Ogunji, J., & Wuertz, S. (2023b). Fish as a protein source in rural Nigerian communities: Nutritional and economic implications. Food Security, 15(2), 345-356. https://doi.org/10.1007/s12571-022-01345-2

Olurin, K. B., Olojo, E. A. A., & Mbaka, G. O. (2024a). Benthic feeding ecology as a determinant of uranium accumulation in demersal fish: A case study of Asa Dam, Nigeria. Ecotoxicology, 33(2), 189–200. https://doi.org/10.1007/s10646-024-02735-1

Olurin, K. B., Orosun, M. M., & Fasae, K. P. (2024b). Bioaccumulation of uranium -238 in Nigerian catfish. Journal of Hazardous Materials, 465, 133-142. https://doi.org/10.1016/j.jhazmat.2023. 133142

Olusegun Sowole, Kolawole Abiodun Egunjobi and Funke Roselin Amodu (2019). Determination of Annual Dose Rate of Natural Radionuclides in Man from Fishes in Victoria Island Lagoon, Southwest of Nigeria International Journal of Oceans and Oceanography ISSN 0973-2667 Volume 13, Number

1, pp. 57-64 © Research India Publications http://www.ripublication.com

Orosun, M. M., Laoye, J. A., & Sunday, T. O. (2023b). Industrial discharges and radionuclide pollution in Lagos lagoons. Environmental Monitoring and Assessment, 195(6), 789-800. https://doi.org/10.1007/s10661-023-11234-5

Orosun, M. M., Usikalu, M. R., Oyewumi, K. J., & Achuka, J. A. (2023c). Industrial pollution hotspots in Lagos Lagoon: Sediment-mediated transfer of radionuclides to croaker (Micropogonias undulatus). Regional Studies in Marine Science, 60, 102868. https://doi.org/10.1016/j.rsma.2023.10 2868

Orosun, Muyiwa & Adewale, Adisa & Cornelius, Akinyose & Amaechi, Ebube & Ige, s & Martins, Gbenga & Debo, Adebanjo & Victoria, Oduh & John, Ademola. (2018). Measurement of Natural Radionuclides Concentration and Radiological Impact Assessment of Fish Samples from Dadin Kowa Dam, Gombe State Nigeria. African Journal of Medical Physics 1(1): 25-35

Orosun, Muyiwa & Lawal, Q. & Ehinlafa, Olusegun & Egbeyale, Godwin & Okwajebi, G. & Adewuyi, Abayomi. (2023a). Assessment of Radionuclide Concentrations in Catfish and Tilapia fish from Asa-Dam Ilorin, North-central Nigeria. African Scientific Reports. 101. 10.46481/asr.2023.2.1.101.

Osburn WS (2019) Radioecology. In: Arctic and alpine environments. Routledge, pp 875–903

Owolabi, A.O. (2018a). Assessment of radioactive contamination in water bodies around mine workings using radiation counter; JME Journal of Mining & Environment, 9(4), 95-806. DOI: 10.22044/jme.2018.7025.1545

Owolabi, O. O. (2018b). Marine versus freshwater radionuclide bioavailability: The role of salinity in fish accumulation dynamics [Doctoral dissertation, University of Lagos].

Owolabi, T. P. (2018c). Environmental factors influencing radionuclide uptake in Nigerian marine fish. Marine Pollution Bulletin, 135, 678-686. https://doi.org/10.1016/j.marpolbul.20 18.07.045

Pearson, A. J., Gaw, S., Hermanspahn, N., & Glover, C. N. (2016). Activity concentrations of 137Caesium and 210Polonium in seafood from fishing regions of New Zealand and the dose assessment for seafood consumers. Journal of environmental radioactivity, 151, 542-550.

Pongsoi, P., Wongkaew, K., & Saenboonruang, K. (2020). Dietary diversification to reduce radionuclide exposure in Thailand. Journal of Health Research, 34(5), 423-432. https://doi.org/10.1108/JHR-05-2020-0134

Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and surfaces B: Biointerfaces, 108, 255-259.

Safia, K. A., Rabie, F. H., & El-Mageed, A. I. A. (2017a). Natural radioactivity in freshwater fish from the Asa River, Ilorin, Nigeria: Dose assessment and health implications. Journal of Radiation Research and Applied Sciences, 10(4), 324–331. https://doi.org/10.1016/j.jrras.2017.09. 001

Safia, N., Orosun, M. M., & Fasae, K. P. (2017b). Radiological assessment of uranium-238 in Nigerian aquatic ecosystems. Environmental Science and Pollution Research, 24(15), 13456-13465. https://doi.org/10.1007/s11356-017-8978-3

Singh, S., Kumar, A., & Singh, B. (2019). Phytoremediation of thorium-contaminated soils using vetiver grass: A case study from India. Journal of Environmental Management, 248, 109301. https://doi.org/10.1016/j.jenvman.2019.109301

Sivaperumal, P., Krishnakumar, P. K., & Rajaram, R. (2020a). Radium-226 in marine fish: A review of accumulation mechanisms and health implications. Critical Reviews in Environmental Science and Technology, 50(15), 1525–1560.

https://doi.org/10.1080/10643389.2019.1663066

Sivaperumal, P., Sankar, R., & Nair, A. G. (2020b). Radium-226 in aquatic ecosystems: Sources and impacts. Journal of Environmental Radioactivity, 225, 106-115. https://doi.org/10.1016/j.jenvrad.2020. 106115

Strady E, Harmelin-Vivien M, Chiffoleau JF, Veron A, Tronczynski J, Radakovitch O (2015) 210Po and 210Pb trophic transfer within the phytoplankton–zooplankton–anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea). Journal of Environmental Radioactivity, 143:141-151

Sunday, E. E., Ojo, M. T., & Adekunle, I. M. (2025a). Bioaccumulation factors and committed effective ingestion doses of radionuclides in Eleyele Reservoir fish, Ibadan, Nigeria. Environmental Pollution, 342, 123089. https://doi.org/10.1016/j.envpol.2023.1 23089

Sunday, T. O., Laoye, J. A., & Orosun, M. M. (2024). Urbanization and radionuclide contamination in Nigerian water bodies. Journal of Environmental Management, 352, 119-130. https://doi.org/10.1016/j.jenvman.2023.119130

Sunday, T. O., Orosun, M. M., & Laoye, J. A. (2025b). Radionuclide concentrations in Nigerian fish: A decade of data (2015–2025). Science of the Total Environment, 912, 169-180. https://doi.org/10.1016/j.scitotenv.202 4.169180

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2008). Sources and effects of ionizing radiation: UNSCEAR 2008 report to the General Assembly. United Nations. (No DOI available; retrieved from UNSCEAR website: https://www.unscear.org/unscear/en/pu blications/2008_1.html)

UNSCEAR S (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. vol 2. United Nations New York,

Uzorka, A. M., Oladapo, M. I., & Adewuyi, G. O. (2025). Agricultural runoff and radionuclide contamination in Nigerian rivers: A case study of Bunza River, Kebbi State. Agricultural Water Management, 277, 108120. https://doi.org/10.1016/j.agwat.2024.1 08120

Wada T, Konoplev A, Wakiyama Y, Watanabe K, Furuta Y, Morishita D, Kawata G, Nanba K (2019) Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity, 204:132–142

WHO (2016) Radiation protection and safety of radiation sources: international basic safety standards. General safety requirements. Pt. 3.

Winde, F., Erasmus, E., & Wade, P. (2019). Containment of mining tailings to reduce radionuclide leakage in South Africa. Journal of Cleaner Production, 230, 1256-1266. https://doi.org/10.1016/j.jclepro.2019.0 5.123

World Health Organization (WHO). (2011). Guidelines for drinking-water quality (4th ed.). World Health Organization. (No DOI available; retrieved from WHO website: https://www.who.int/publications/i/ite m/9789241548151)

Yahaya, M. N., Orosun, M. M., & Laoye, J. A. (2024a). Oil exploration and radionuclide pollution in the Niger Delta. Environmental Research, 240, 117-126. https://doi.org/10.1016/j.envres.2023.1 17126

Yahaya, T. O., Bala, A., & Abdullahi, K. (2024b). Oil exploration and radionuclide contamination in Niger Delta fish: Trends from 2015 to 2023. Marine Environmental Research, 193, 106299. https://doi.org/10.1016/j.marenvres.20 23.106299

Downloads

Published

2025-06-15

How to Cite

Ulu, E. J., Samuel, J. A., Bello, A. A., Stephen, O. M., Kitagak, D. Y., & Joseph, D. Z. (2025). A SYSTEMATIC REVIEW OF RADIONUCLIDE CONTAMINATION IN NIGERIAN FISH AND ITS IMPLICATIONS FOR PUBLIC HEALTH. International Journal of Renewable Energy and Environment, 3(2), 1-12. https://doi.org/10.5281/zenodo.18249875

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.